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THEORY AND APPLICATIONS OF THE NOTION OF CCPLM SIOGAL

by J. Ville

ABSTRACT

"The present article i a contribution to the problem of the composite

representation of a signal by a two-dimensional distribution of energy in a

domain defined by two axes, the time axis and the frequency axis. The author

proposes such a distribution, using operators analogous to those used in

quantum mechanics. He thus obtains a definition of the instantaneous spectrum

of a signal, and of the distribution of the energy corresponding to one fre-

quency. By integration (with respect to time) of the instantaneous spectrum

(which varies with time) the spectrum, in the usual sense of the word, is

recovered. The author defines the instantaneous frequency of a signal in

the same way, using the notion of a complex signal (obtained by the complex

extension of the real signal when time is considered as a complex variable).

These notions of instantaneous frequency and of the instantaneous spectrum

are introduced to furnish a firm theoretical basis for studies of frequency

modulation, of continuous harmonic analysis, of frequency compression, and,

in a general way, of all the problems for which classical harmonic analysis

furnishes a description which departs too far from physical reality.

Th teo= "Aralytic Sigua* Is ofteu used vbfv T Cowplex Sigma"
be" ppm



ow l C , 1u, - .

T-92

2

PLAN

I. BIBLIOGRAPHICAL NOTE

I. INTRODUCTION

1. Quantity of information transmitted and complication of a signal.

2. Evaluation of the complication of a signal by the number of appre-

ciable harmonics which e.,e contained in its Fourier expansion.

5. Necessity of composite expansions in time and frequency, for the

study of certain questions.

4. Preliminary remarks on the concept of instantareous spectrum.

5. Genera statmWt of tO piObIm of taataraeous rpectmm and

instantaneous frequency.

III. PART ONE: COMPLEX SIGNAL AND INSTANTANEOUS FREQUENCY

6. Extension of a real signal in the complex plane.

7. Complex signals. They may be considered as the result of the

modulation of their envelope by a carrier which is itself frequency

modulated. Instantaneous frequency.

8. Any signal modulated by a sufficiently high frequency may be con-

sidered complex.

IV. PART TWO: GROUP VELOCITY AND INSTANTANEOUS FREQUENCY

9. Group and phase velocity.

10. Group delay of a signal considered as the weighted mean of the

group delay of different frequencies.

11. Mean frequency of a signal considered as a weighted mean of dif-

ferent inst4antaneous frequencies.

V. PART ThREE: DISTRIBUTION OF ENERGY IN THE TLMP?-FREQMENCY DIAGRAM.

12. Characteristic function of the energy distribution.



T-92
8-1-58

3

of the energy associated with one frequency as a function of time.

VI. PART FOUR: APPLICATIONS OF THE CONCEPT OF COMPLEX SIGNAL

14. Second moment of the signal as a function of time. Amplitude and f

phase distortion.

15. Transfer admittance B

16. Band-pass filters; examples of physically realizable admittances.

17. Bell-shaped admittance curves. t
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p

TRE PRICIPAL SYMBOLS USED

t - time 0

s(t) - real signal C

0 (t) = quadrature signal e

Y (t) = s(t) + jo(t): complex signal b

f - frequency (in cycles)

W = frequency (in radians)

s(w.) - spectrum of a signal (frequency expressed in radians) t

4(f) = spectrum of a signal (frequency expressed in cycles)

T - mean value of time

T = mean frequency

tf = mean delay associated with frequency f

ft - instantaneous frequency at the time t

j = imaginary unit

z* - z - conjugate

u a mean value of u

lu/ -modulus of u
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I, BIBLIOGPAPHICAL NOTE

The fundamental articles which deal with the general theory of variable

frequency circuits are:

J. R. Carson MAT. C. Fry, Variable Frequency Electric Circuit Theory,

Bell SyZ tem Technical Journal) 1937, t. XVI, P-513

D. Gabor, Theory of Communication, Journal of the Institution of Elec-

trical E!gineers, vol. 93, part III, no. 26, Nov. 1946, p. 429

In the first of these articles is studied the behavior of a signal of
the form CooIt) dt + 1 a function of the variable frequency --(t), in

passing through a network. in the second, the author decomposes a signal

into a double series of signals, where each of the elementary signals

occupies a certain domain of the two-dimensional time-frequency diagram.

Carson, Fry, and Gabor have also considered composite representations,

expanding the signal in time and on the frequency scale at the same time,

but without giving an exact definition of the distribution of energy in a

similar diagram, which leaves a certain arbitrariness in the methods of repre-

sentation that they choose; on the contrary, in the present work we study a

two-dimensional distribution of the energy, which assumes nothing about the

form of the elementary signals used to analyse the given signal.
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II. INTRODUCTION

QUANTITY OF INFORMATION TRANSMITTED AND THE COMPLEXITY OF A SIGNAL

The transmission of cowunication signals is accoilishe4 by wara of a

transmission of energy, generally of electromagnetic or of acoustic energy.

In contrast to the case of power transmission, it is not energy itself which

is of interest, but rather the changes in this energy in the course of time.

The more complicated the function which represents, as a function of time,

the change in voltage, current, pressure, or any other carrier, the greater

is the amount of information carried by the transmitted energy.

EVALUATION OF THE COMPLEXITY OF A SIGNAL BY THE NUMBER OF APPRECIABLE HARMONICS

WHICH ARE CONTAINED IN ITS FcORIER EXPANSION

In practice, in order to evaluate the degree of complexity of a function

in a transmission system, one proceeds to harmonic analysis; that is, one

expands the function into sinusoidal components in the form of a Fourier

series or integral. A function s(t) may therefore be considered from two

different points of view:

1. From the first point of view, the function is considered

directly; to each value of t there is associated a value of s,

and complication of the function increases with the number

of variations shown by the curve which represents a as a func-

tion of t . In the case of acoustic signals, this first point

of view is difficult to specify; on the other hand, in the case

of telegraph signals, which are composed of a series of pulses

of the same length and height, it is easily seen that the

function becomes more complicated directly with the increase

of pulses which occurs In a given interval of time.
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2. From the second point of view, the function is considered to

be composed of the ruperposition of sinusoidal functions which

differ in amplitude and in phase. The function becomes more

complicated directly as the number of sinusoidal components

of appreciable amplitude increases. The second point of view

Is of interest in the study of distortions; in fact, if the

signal is transmitted across a distorting system which suppres-

ses certain sinusoidal components, there is a certain loss of

information in this deformation which may be evaluated. From this

it is seen that the capacity of a communication channel may

be evaluated; this quantity being proportional to the number

of independent frequencies that the channel can carry. The

consideration of the second point of view is essential in com-

munication theory.

THE NECESSITY OF COMPOSITE EXPANSIONS IN TIME AND FREJENCY FOR THE STUDY OF

CERTAIN qUESTIONS

There exist some questions where the preceding points of view are insuf-

ficient. Since it is desirable to use a communication channel to the maximum,

oa is lad to ime. the iategms treaneslas of a ulaal; aWW#, 4is -

tortions are inevitable. In particular, it is known that if the physiological

impression produced by the superposition of harmonics were not independent of

the relative phase of these harmonics to a certain degree, no long-distance

telephone transmission would be possible. In the same way, frequency compres-

sion would be physically unrealizable if the relative phase shifts of the

different components had to be maintained in the compression of the frequen-

cies. But this tolerance in transmission is not admissable in certain cases.

If we consider a continuous note, emitted by an organ, for instance, we can
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Shift the phase of the harmonics without chaniging the sound. Consider a

symphony; If we expanded the correspondin.g sound in a Fourier series, vC

would obtain a series of harmonics, heard for the duration of the symphony,

whose phases we obviously may not arbitrarily change.

So we see the necessity of going past the harmonic analysis of a function.

We are going to show what general course we should follow in the particular

case of an acoustic signal.

PRELIMINARY REMARKS ON THE CONCEPT OF INSTANTANEOUS SPECTRUM

On hearing a fragment of music, there is no connection between the physio-

logical impression received at an instant, and the amplitude of the acoustic

signal s(t) considered: the ear reacts only to a succession of values of

s(t). But this does not at all imply that the definition of s(t) in terms of

its sinusoidal components is perfect. If we consider a fragment containing

many measures (which is the least that one should ask) and one note, la for

example, appears once in the fragment, the harmonic analysis will present 1s

with the amplitude and the phase of the corresponding frequency, without

locating the la in time. Now then, it is obvious that in the course of the

fragment there will be instants when the la will not be heard. Nevertheless,

the representation is mathematically correct, because the phase of the notes

near la acts to destroy this note by interference when la is not heard, and

to reinforce it, also by interference, when it is heard; but if there exists

in this concept a cleverness which does honor to mathematical analysis, there

is also a distortion of reality; in fact, when la is not heard, the true

reason is that la is not emitted.

It is therefore desirable to search for a composite definition of the

signal, of the kind anticipated by Gabor: at each instant a number of fre-

quencies is presented, giving the strength and the pitch of the sound which

- ~ - ~r-.± ...- - z -'
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Is heard; with each frequency there is associated a certain distribution in

time which defines the intervals durlng which the corresponding note is

emitted. This leads to the definition of the instantaneous spectrum as a

function of time# which gives the structure of a signal at a given instant;

the spectrum of the signal, in the usual sense of the term, which gives the

frequency composition for thr: whole time interval of emission, is obtained

by summing all the in3tantaneous spectra (in a rigorous way, by integrating

with respect to time). In correlating, one is led to the distribution of

frequencies in time; the signal ib recovered by integrating thrse distribu-

tions.

Unfortunately, things are not as simple as they seem at first gla-ce.

We actually see that we have to envision the continuous harmonic analysis of

a signal; for such an analysis we can:

1. First cut the signal into pieces (in time) by a commutator:

then present these different slices to a system of filters to

analyse them, or

2. First filter the different frequency bands: then cut the bands

into pieces (in time) to study the energy variations.

Continuous harmonic analysis consists then of the application

of two operators (filtering and commutation).

But these two operators are such that either one of them, if it is very

xxact (very short pieces or very narrow hands) renders the other inoperative,

because it deforms the signal considerably (by the introduction of transient

currents for commutation, of a long duration for narrow band filters). The

instantaneous spectrum may only be determined, physically, to some approxi-

mation. But another question is presented us: approximation to what? That

is why we have tried to obtain a precise definition of instantaneous spectrum,
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in order to have a theoretical basis, non-existent until the present, to guide

research into the specification of apparatus for continuous harmonic analysis,

frequency compression, or any other techniques for which the classical concepts

of frequency and spectrum are insufficient.

After these general considerations, we shall pose the question in more

precise terms.

OF TES ffOX OF INSTAWBAAMS SPSCTRW AWD

The difficulties presented by the definition of instantaneous frequency

of a signal are well known. These difficulties stem from the fact that the

frequency of a sinusoid is defined rigorously only vhen it exists for an

infinite duration; the spectrum of a signal s(t), which may be expressed as

S M =1 /s(t) e-•1t d(1) s
2x dI

is defined for the signal ensemble, a d does not contain time explicitly.

Therefore, in the classical theory, neither the instantaneous spectrum at

the instant t nor the instantaneous frequency are susceptible to definition.

This still concerns primitive concepts. If, for example, we consider a low

frequency modulated signal of the form

(2) s(t) = cos (W t + AV ain Z1t)
0

it is evident that the "instantaneoue frequency" (which is conventionally

defined in the case of frequency modulation)

(3).-)= --L (c t + ,ha, sin ,rt) = c.&. + A w coo SQt(3) ~ ~ d 0o J1•• % o o 0

has a physical significance, which grows precise as rl decreases with respect

to Co.
0
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We here propose to give a definition of instantaneous spectrum, valid

for a fairly extensive class of signals, to develop certain applications of

the conaiderations to which this problem will lead us. The definition which

we propose to make introduces conventions which may appear arbitrary, but

which are justified by the coherence of the results and by the parallelism

with the analogous conventions which have proved so fertile in quantum

mechanics.

Ocr point of departure is the following: it has been easy to associate

an instantaneous frequency with the signal (2) because this signal "may be

considered" as the real part of the signal

(4)(t) =ej(ot + I )

which has a constant modulus. The instantaneous frequency, in radians per

second, is merely

d
(5) ao g

We need only, in the case of any signel, plece it in the form

(6) s(t) 4 [(t) * (t)]

in order to extend !t into the complex plane, and we shall obtain the

instantanecus frequency by expression (5); (t) will be called the complex

signal. The first part of the article will be devoted tc the cs~oblishment

of the correspone-ing expressions. In or-der to justify, from anotner point

of view, this definition af instantaneous frequency, we shell attach the

concept of group velocity to it, which constitutes a secon-2 part. We

imtmediately p&ss to the concept of irstantaeous spectrum, because instantan-

eous frequency defines a signal only grossly, and it 5hould be conbidered as
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the mean value, at a given instant, of the frequencies of the instantaneous

spectrum. We treat this question in Part III, according to the following

principles: a signal may be considered as being a certain amotut of energy,

whose distribution in time (given by the form of the signal) and in frequency

(given by the spectrum) is known. If the signal extends through an interval

of time T and an interval of frequencies n., we Msve a distribution of energy

in a rectangle of area TZ1. We know the projections of this distribution

upon the sides of the rectangle, but we do not know the distribution in the

rectangl. itself. If we try to determire the distribution within the rec-

tangle, ve run into the following difficulty: If we cut up the signal on

the time scale, we display the frequencies-, if we cut if up on the frequency

rcale, we display the times. The distribution cannot be determined by

successive measures. A simultaneous determination must be sought, which has

only a theoretical significance: therefore we must operate either on the

sigrAl or on the spectrum. But ror the 3ignal where, for example, time is

a variable, frequency is properly speaking an operator (the operator

(1/2 xj)d/dt, for frequencies in cps). de have determined the simultaneous

distribution of t and. of(1/2 P.a)d/dt, by methods of the calculus of prob-

abilities, which easily leads to the instantaneous spectrum (and Just as

easily to the distribution in time of the energy associated with one frequency).

It is seen that the formal character of the method of calculation used is

imposed by the nature of the difficulty encountered, which is analogous to

that which occurs in quantum mechanics when non-permutable operators must be

composed. We shall use many results due to G bor (Theory of Communication),

and tbe-sane notation, which allows us to avoid some problems to proceed to

the development of new points of viewt Finally, Part IV contains some appli-

cations of the concept of complex signal which has been imposed upon us, as we

have said, in the research into instantaneous frequency.
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III. PART ON: COMPLEX SIGNAL AND INSTANTANEOUS FREQUENCY

EXTENSION OF A REAL SIGNAL IN THE COMPLEX PLANE

Let us consider the signal

(1) S(t) = con wt

We may consider it, either as the real part of

(2) e(t) =

or of

(,) y* (t) =

Since t takes only real values, there is no reason to choose one of the

forms rather than the other. This is not so if t takes the complex values

(4) t= t+je

sine* now som differences appear. If, in tact, e tends toward + co,

( tends toverd zero adY tovard infinity.

If ve decide to retain, insofar as possible, only the functions which

are regular in the upper half-plane, we then choose

sin#.,t t

/

Figure 1. The instantaneous frequency w of a signal cos 'A is the angular
velocity of the point of coordnates con &t, sin wt (sin 6t
is the signal in qmdzature vWth cos cot).
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(5) v(t) e

Let us take another simple exap•e:

(6) S(t) a 1

We may consider it a the real part of either of two fumctions

1 1
(6) ! or

OWly one of these. the second one, is regular in the upper half-plane;

therefore we choose

(7) y(t) 1

Lot us consider a third example:

(8) S(t) 0 t< - 1 where t >1

We can consider s(t) as the real part of

t-
(9) N -T

with a conveniently chosen determination. FImction (9) is not uniform; we

make it uniform in the upper half-plane by excluding the alngula points ± 1.

In general., the principles above lead to the associatio• of the quadra-

ture stigW
(V

(io) (•)" -
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and the function

+

(U) .r(t). 8(t) + aa(t) .LdT

'4ith s(t).

Equation 11 defines -r as a function of the complex variable t, holo-

morphic in the upper half-plane. It is known that, conversely., for t real:

(12) s(t) - 1
S7- t

CCLM BINAI. * W MAY BE coim== AS To MCOT Cap ME MM1UATION OF

A signal such as Y (t) wil be called a cooplex sig'Al. We can define

s(t) by

(13) s(t) - aRe F (t)I darg

which defines s(t) as the result of the modulation of the signal a jrg V" by

the simg •IV If we consider I 'i as representng the envelope of s(t),

azd e argvas a frequency modulated signal, ve btain for the instantaneous

frequency (Fig. 2)

1 d 1 y V4
(14) ft" 2 -Y •5 E

or s(t) -cos (ut + ,,, we obtain

W>O
(15) Wt - ,A
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ro(c) Vt

Fig. 2 -- The Instanteoums frequency of the sigaal s(t) is the angular
velocity of the point Vr(t) - s(t) + Jd(t), wherecr(t) is the

s=a•l in quasdature with respect to s(t)

The instantaneous frequency is constant for this signal. If we con-

sider th6 rjigm':

(15a) 1 + t 4.

we obtain:

Z- L
(16) 2r, + t2

Let us nov consider a modulated sinusoidal signal:

(16a) S(t) cos Wt Cos nt n)lW>o

then we have

(16b) ) Ej(A+W)t + eJ(X-

14( (t) - Wt f

The instantaneous frequency is the carrier frequency, and 4'J is the

envelope as it is usually defined. Note the importance of the fact t•bat the

coeoficienvs t of the exponentials are positive. Neglect of this point would

lead to the inversion of the roles of W and , and would produce absurd

results.
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AN~Y SIGNAL MMMATO BY 1. 2ICIMY HMG MEAMM-1C MAY BE CMDO

The fact that in the preceding exampe the carrier frequency turned out

to be the instantaneous frequency is not an Isolated coincidence, but rather

results from the following proposition:

For Mn sip4a s~t), the function

(a) ýv (t) . s(t) e JWot .>O0

which in general is not coplex, aPpr~ches t h o.•olex sl , '(t) [asoci-

ated with s(t) coo wt_.ea w increases.

Consequently, the instantaneous frequency w /2 my be attributed to
0

s(t) cos w t, for very large values of e0 0

The proposition which we shall come to use is itself an Immediate con-

seqence of the fact that a ccmplex sig•a•1 is characterized by the peculiarity

of having a spectrum whose amplitude is zero for negative frequencies. Now,

moulating s(t) by ejt amounts to causing the spectrum of s(t) to be trams-

lated by the amount w . For a large enough value of w'# the spectrum lies
0

entirely bi the region of positive frequenciesp &ad s(t) ea Jt becomes cm-

plex.
1

Whis is the real reasm that Gabor uses bell-shaped modulated signals.
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IV. PAR~T NVO: GROUP VELOCITY! -An4 mzNkrMAw1 M~1 7rI~tW1Y

GROUP A=D MM& VILOCITr

It is well known that if a mi 3ma has a phase velocity V , its group

velocity is

C1) VgS

It is shown In this forUla, that the simple characteristics are the In-

Tweet of the g'rot and phase velocities, i.e., roup anM phae propogation

delays for a given distance.

GROMJ DIlAY OF A SIGAL CO~nM= AS M WEIGHZD WAN (r T' GROUP DMJAY

Let us now coBsder a complex sigul Vt. and let 1t be its spectrum;I

then ve have:

(2) v(t) - J•()e2 -Xjttd

p- 2 ?f jft

(3) Cf ) JfV (t)e d

(14) (
1)J tP V dt J Air V dt

(5) J 23dtJI

Lot us try to evaluate the delay of the signal. We may consider the

energy of the signal as being expressed in the density V *Yduring the i-.

terval. dt. For the delay this gives us the mean value:

'We shall ewploy, acording to the situation, the notation i or f for
frequency, measured in rad/see or cps, respectively. The corresponding
spectra are s(u") andcf(f).
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- P*t-4r at

(6) fY*3I ' dtfv* Vdt

Since this delay was determined by energy eonsideratms, it will be

called the gro delay. Nov using Eq. 4, we obtain:

~* -- N ......(7) 4)df

Let us examine the modulus and the argument of •t

d~ 14 d4

Since T is real, w obtain:

1 jyargodf

(8) f -

Let us consider now that the energy om the signal is distributed on

the frequency scale with a density 00 *; we see that T, the group delay with

respect to the sigQal as a whole, is obtained by taking the weighted mean of

the quantities:

d
(9) t..-4

which we c•sider as the goup delays of the different freguencies. We see

that the power associated with a frequency f may be considered as being pres-

ant at the mean instant tr

)WN R3W==C OF A SIMNL CONSID= AS A WHIM= MWN OF DMMZT IN-

Let up now reverse the role of f and t. We see that the mean frequency

of the slial, defined by
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(a) P . .

may be defined equ&Ly vtU by:

v 4 daxsg dto
()21( fv* W'dt

t1hat ls, as the weighted mwan of an instantaneous frequency:

(10) ft a 1 d
rf r U arg ~ (in MV2*sPea/..OOM)

We trhaf come across this expression again.
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V. PART TMM: DISTMUTXON O M IN UM TDI WrCDI.DA AM

CH&T~XTICMCMrON UPM ]s DMB~n"T CcOI

We shafll now define the distribution of the energ in time and in

frequency, of the form: (Fig. 3)

(1) (t;f) dt df

f

V
* 1
itO I
0 8
* I
* I

'6
* 0

* b(tj f) dt &r

It

* I
S I
I e

Fig, 3--To the elemant dt df, in the time-frequeacy diagrem, corresponds an
energy p(t, f) dt df. The distribution of these energies in a ver.
tical strip gives the instantaneous spectrum at an instant t; in a
horizontal strip we obtain the energy carried by one frequency as a
function of time. By projection on the axes, we get the signal
(tim. axis) and. its spectrumn (freacuency axis).

We shall suppose that, in the following, we are considering a nornmal-

ized .44gal, for Which:

(2) .fOtd ~ t

which does not at all restrict the gen&rality. • possesses the properties

of a probbilLty distribution function, and we shall detbrmine its charac-

teristic function:
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(3) F(u, V) -) f eJ(ut + vf) p(t, f) dt df

+i
We have to calculate the mean value of ej Ut + vf) buL to do this we

have only the function V", which does not contain f, and the ffunctiofn 1

which does not contain t. We must then consider either f or t as an oppr-

ator, If we work with pf, we will arrive at the equation

g(ut, __L d )
(4,) F(,v) = e 2•'J dt (t) dt

Let us see what results froi this expomential operatapr, applied to •(

If we split the expression into two parta, we datain, according to the order

in which we consider the factors:

(4a) SjutMYddu

or:

V d jut~(4b) 0 e *(t) sowxpJu(t + M) (t + M)

These equatlons are unacceptable, being inccopatible with the relation:

(4c) ?* (ul v) = F ( - u, -v)

which follows fro (3) (for real u, v).

Let us consider the geometric mean 1 of the two results given by the

preceding equations;

1 The form (5) of the operator considered is that which results from the
power series exyusion of

" ~(Ut + dZ •)n
2 2J ddt

maintainIng the order of the terms.
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()ej (Ut + Z.%"5 /( eJu (t .. '.('t +.

We obtain (with a slight change in notation):

(6) F(u, v) fY*(t - + .I (t .

which is an acceptable form of F(u, 1).

DISTRIUTION OF LIMGY. flSTANWE= UMTRUM M SXC2CA XWT CF Tag

MM~G Ma8OIATW WITH M~ rANIO7.T As A k'oITIift OF ZwN.

The presence of the factor ejut in-tcat'e that the characteristic func-

tion of f when t is knovm is none other than:

from which the 61' -ribution function of f when t is known:

Since the distribution functimi of t is }Y (t) 2 , we finally obtain:

(9) p(t, ) .L (t - + e-jvdV2 71
V

The modulus c..' the instantaneous spectrum is given by Eq. 8; in an

analogous manner, the distribution of the energy associated with one frequency

would be

(10) pf(• ,2 fP( f- -

4?I~ ) 41

11t does not seem possible to compute the phase of the instantaneous
spectrum.
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VI.* PAR~T YOUR: APPLICAXTIONS OF' TH CONCEPT Ci C 0&=~ SIMMA

The duality vhich exists between time and frequency permits the canIr-

ficaticv of certain phencmena; ve shall treat some typical exoMles.

DISIA (V ME BIOQL AS A nM~TION (W TD(H. A3XL1TTDIC AND PMO D5C~T[

Let V(t) be a complex signal. If we consider the frequency, we see

that the a' al has an envelope I ¥(t) Iwhich modulates a 5iignal vith S varlp

alie Instantaneous frequency. Thmn in the determination of the frequencles,

ve abould expect two terns to appear, one representing variations of instan-

taneous frequency, the other, variations of the amplitude envelope. Analyti-

cally, suppose that we had taken the mean frequency E., the mean of the in-

stantaneous frequencies, as the freq, %ency origin.1 Then we have:

(1) ?a V*fidt aO

The second moment of the frequency will be:

(2) f*f f df

and the second moment of the instantaneoue frequencies:

Forming the difference and exprexsit•g aa a !unct6on of

(4) t 4 + arg dt

Where

(4a) e sigal is ni

1we still assume tht the signal is normlized.



11d = . d d

aTIW + arg• y

1 2 
2

-- ~ -- f Tto

(4b) 1 a )1 + etc.**
y dt VIdI Y

Substituting the expression of d - q in (4~), and keeing only the
Yj dt2

real terms,

7, -r .f-- fLt
(4c) .4 2f_

frcm which we obtain the final expression for f

1 77 2
2 dtT_

(5) 4 X - t

The two previous terms are seen to appear, one depmnding on the secmsd

moment of the instantaneous frequencies, and the other on the amplitude varl

ation of the envelope.

It we consider the second moment in time, we obtain, taking the mean

time for the time origin:

Ti J4*F(arg 0)2+(T 4df2(6) 4( dt dL 2

We re-encounter familiar concepts here: in fact. if we asgmc that

the signal was produced by the passaWe of a Dirac impulse through a filter

with the ch•arcteristic 1f), we viii fin& in t- the two alments of dis-

tortion--the first term results from phase distortion and the second fro
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mmplitude distortion. We note that the pbhase distortion here int-roduced in

a distortion of the group time of prpgaetion (delay distortioni).

Introducing logarithms, we obtain for the standard devitions of time

and frequency

C 2
dt - r '

2

t 2w 1* log ý df- M - df
(7) 4 U2f df Idf

Assue a transfer admittance y(jw). If i is cmýplex, the decaying cur-
r-ents o the form e.- have a positive iminary part. Then Y(j w) is regu-

lar in the lowvT half-plane. Referring to the properties of a complex sig-

nal, we see that it is possible to pass from the form of an admittance to

the form of a co~lex sigal by the change of variable

(8) ',w - t

If *(t) Is caqp1sxt ffzs it ve can d*&wa a transfer Ispadmao b7th

equation

(9) Y(OW) - w(.•

The impulse admittance associated with y(J w) is

(10) E(t) - 1 (Jy0 ) ( da.

Hence the qectrm of v(t) is

(11) , = 1 ," a y (t) dt - B(2 ?r
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B(t) is zero for negative values of t, aMd so S(M) is zero for negative

values of w. The only new restriction is that B(t) be real,. which entails

that -'(t) be a symmetric complex signal, i.e.

(12) V ( - t) - i*(t) (for t real)

Uader ccndition 12, there is a perfect correspondence between transfer

admittances and analytic signals, and between spectra and Impulse admittances.

BA.M-PASS 7fl. ILAXPI; CP PHY SCAL.Y -ADMIMO

The formation of the transfer admittance of a filter is anaogous, as

we have seen, to the formation of a complex signal. But to form a complex

signal it suffices to extract some e(t) from a sigal and to form its spec-

trum, from which:
r 

A

(13) a(t) W js (w) aJL •,d[s (-w) - S* (w)3

and consequently, upon doubling and keeping only the term -which correspond

to positive frequencies, this leads to

(14) .(t) 2 2 f 8(') 'PO a

0

In order not to cut into this spectrum (by the neglect of the negtive

frequency terms) a shift to the right by a suitable modulation may be made.

The correapondina procedure for forming a transfer admittance is the

following:

(15) l (t) - W) j* Jo 4c2 ?f-y
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B1(t) does not disappear for t <0 (it in this which shows that Yl is

not ph,-yicaily realizable). BI(t) is shifted to the right and cut off at

the left such that Bi(t) = 0 for t< 0.

(16) 3(j.) 3(t) e dt

If T is the amplitude of the translation which B (t) undergoes, we

obtain:
0a

(16a) TO W) - 6  lit -T) e dt
0

If B1 (t) is symetric, the tail of the signal may be cut off, which

results in:

(17) Y(JOW) (t - T) e t

This last admittance has the advantage of not causing any phase di.-

tortion. But there is an amplitule distortion. For instance, let:

Y= 0 outside the above intervals

B1(t) si :! si't

0 2

-.... ~ ~
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Y(Jc.) has J for its argument; there is no phase distortion. In fact,

as T tends toward infinity, I Y Itends toward the characteristic of an ideal

band-pass; but in the neighborhood of Wand 2 osci1latims due to the

Gibbs phe o are present.

3AMU88IA ADh~T1PANE CLMWE

Ga.usian admittance curves avoid this difficulty. It is well krwwn

that the signal:
t2

(19) s(t). . eT

has the spectrum 2
-- ,

(20) s(e) •

hence, for the aignal:

(t t 0
2

(21) e= 20

we obtain as the spectrum:
02402

2 o

(22) S(.) e e

If we modulate by eJ&o(t " to) (iuO> 0), we d1isplace the spectrum of

and therefore:
_2

(() -. t o J• w .o (t - to )

2 Q )2)

(23) 6(SM - 2 e Wt
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For toi , SU) may be considered to be situated in the reaion W>0°
05

To the sigpal:

(t - to)2

(2!) 6(t) e 2& cos Wo(t - to)

there correspomns the spectrum:

[22 22

"- J w .t d 
d _) ( W + -0)2

e(., 0. 1 e 2+e 2
(25) 2 +e

For to> 3a, we can consider S(w), given by (25), as a transfer admit-

tance. For 1 > 3/t . we need conserve only the first term in the parenthe-
4 0

ses in (25). It is easily shown that if the cosine of (24) is replaced by

a sine term, (25) is replaced by:

22 2 :2ý

(26) S(W)- j e" - [5 1%e - e 2

Suppose we wish to specify the pass-band (,ai w,) We will choose
1 2

I > 3 , to > 3e > 9/1l, and wu will integrate with respect to o from

to 0, which results in (adding the appropriate coefficients):

--(-" 
4e)2

Y(,,c,) S(4) e 0 -- e 2ow

(t - to) 2

s(t) B(t) e1 2,- sin w(t - tO) - sin l(t - tj)

(27) t - tO

S.. . • •-• • -• ••_j- _,.. .....- T,0
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A low-pass filter would be characterized by:

(t - to) 2

(28) B(t) = e 2d 2  sin .,l(t - t0)
( 8 t - t0

P 3s3, HIFTNG FILTR, SHIFTIG HE SIGNAL INTO QUADRAT¶RE

If, instead of (25), we start with the spectrum (26), and we integrate

between zero and wis we obtain a filter of a fairly special kind, character-

ized by:

2 2 2 2

Y(jw) j-J e - -) - e I •o

(t - 2

q 2o,2 1 - Cos •~ o
s(t) =B(t) = e 1ecs~(

(29) t - t0

If I and r tend toward infinity, we see that by suppressing the factor

e" jW t0, we obtain a transfer impedance of the form (for real w):

(30) Y(jw) = j Sigal 40
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Ifhii ,tm en a 4 "no 1

is then transformed into:

(30b) d(t t 0 ) - J s(t - to)

Therefore, s(t) is transformed into d (t): the filter defined by Eq29

has the property of transforming a real signal into the quadcrature signal

a(t), to a certain approximation which improves as the time of propagation

through the filter increases.

The filter (29), for large w and to causes a distortion not in ampli-

tude but in phase. Its interest lies in the fact that it provides, it seems

to us, the simplest theoretical means of cauiing the aignal to appear in

quadrature; this signal never occurred previously except as a computational

convenience.

QUADRATME SIGNAL AND SBGLE SIDE-BAMD RANSMSSION

We shall recover the quadrature signal by another procedure, based on

experience. It is known that the quadrature signal appears as a parasitic

signal in single side-band transmission the considerations developed here

permit a clear explanation of the phenomenon.

Consider a real signal s(t), which occupies the frequency band from -

to w1 . With this sigmal, let us modulate a corrier cos flt, where f1>1.

With this new signal, let us modulate another carrier, cos -mt, and we shall

filter using ( f.,Xl) as the pass-band. Then we obtain the signal:

(31) s(t) . Cos 2 t 1 It I + cos 2IL tI
2

which, after filtering, results in 1 s(t). This is the ideal case of double-
2

side beand transmissioa (suppressed carrier).

I=, Z=- ' ----Z
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Now let as assume that the second carrier is shifted with respect to

the first; let cos (AIt +4p) be this second carrier. We would obtain the

second signal:

(32) s(t) cosat coo ,,At +,) • s(t) Ecos• + cos (2nt +T)3

1
w'ich, after filtering, results in g s(t) cos i. The phase shift is trans-

formed into a signal attenuation.

If we operate with a single side band, we must insert a filter between

the two modulations, which obliges us to insert 40(t). Let S(.•) be the spec-

trum of l (t). After the first modulation, the spectrum becmes:

(33) 1-r +s( +

We keep only the lover band., and continue to the second modulation (Fig. 4).

If the second carrier is in phase with the first one, we recover the original

spectrumj but if it is not in phase, i.e.f, we multiply by

(34) 17 e Jat + q)+e

we see that the right half of the spectrum is multiplied by ej, and the

left half by e" J f. The final signal has a spectrum

for 4 > 0 6l() 1 J4

for cu < 0 = e S(ýo)

The corresponding ccplex sismal is then:

(36) .5(t) " Tj (t)
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A k

Fig. 4--The spectrum of the signm is shifted to the left and to the right
by the first modulation. The filtering suppresses the high frequen-
cles (correeponding to the originally positive frequences of the
right spectrum and the originally negative frequencies of the left
spectrum). The second modulation,, if it is in phase with the first,
restores the original spectrum, putting the pcysitive and negative
frequencies back into place. If it Is shifted in phase with res-
pect to the first modulation, the positive and negative frequencies
are out of phase themselves, whence comes the appearance of a s8gial
in quadrature.
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°mIs a ba OkM of qr(t)# an as a 1 0% " m

Is introduced. We have precisely:.

(37) el(t) = K js(t) cos p - 6(t) sin

We now see the difference between the double side band and single side

band modes of transmission.


